赤外線発光ダイオードを光源とする 塗膜の遮熱性能評価方法の開発 Development of Thermal Insulation Characteristics Evaluation Method in Coatings Using Infrared Light-emitting Diode

竹内 徹、金子 良一、望月 聡

キーワード:遮熱、赤外線発光ダイオード、日射反射率、日射吸収率、評価方法

Keywords : Thermal insulation, Infrared light-emitting diode, Solar reflectance, Solar absorptance, Evaluation method

1. はじめに

近年、建造物の高密度化が進む都市部では、 建物の屋根や外壁、アスファルトやコンクリー トの舗装面等が日中に蓄積した熱を夜間大気中 に放出することで発生するヒートアイランド現 象が社会問題となっている。この問題を解決す る一つの手段として、日射による熱の蓄積を抑 制する遮熱塗料の適用が進められている。遮熱 塗料はいわゆる高日射反射率塗料と呼ばれ、太 陽光に含まれる近赤外波長域の光を極力反射す ることで、被塗物の温度上昇を抑制する機能性 塗料の一つである。ただし、一般塗料でも明度 の高い塗料であれば日射反射率も高く、遮熱塗 料と同様に機能することはよく知られており、 ギリシャやイタリアなどの地中海沿岸の建物が 白く塗られているのはその好例であろう。

また、太陽光により塗膜が照射される時、そ の熱エネルギーには、反射+吸収+透過=1と いう形式が成立し、反射されずに塗膜に吸収さ れた熱エネルギーが被塗物表面温度を上昇させ、 さらに残りの熱エネルギーは塗膜を透過し被塗 物内部温度を上昇させることになる。つまり、 遮熱塗料の評価では太陽光の反射率だけでなく 吸収率や透過率も重要なファクターであり、特 に近赤外波長域における日射反射率・日射吸収 率・日射透過率は遮熱パラメータとして定量評 価することが重要となる。

そこで本研究では、遮熱性能の異なる各種試 験塗板を作製し、太陽光の疑似光源として選定 したピーク波長の異なる複数の赤外線発光ダイ オードの反射光強度データにより、遮熱塗料を 含む一般塗料で形成された塗膜の遮熱性能を評 価する方法を開発したので報告する。

2. 実験1

2.1 赤外線発光ダイオードの選定

近赤外領域における太陽光を近似する赤外線 発光ダイオード(以下 IR-LED)を選定するた めに参考にした太陽光スペクトルデータ¹⁾を図 1に示した。比較的エネルギー強度の高い近赤 外領域(波長:750 nm~1650 nm)を3分割し、 それぞれの中心波長に近いピーク波長を持つ IR-LEDを選定した。その際、大気中の水分子

2020年7月10日受付 TAKEUCHI Toru, KANEKO Ryoichi, MOCHIZUKI Satoshi プラムネット株式会社 (〒221-0844 神奈川県横浜市神奈川区沢渡1-2 菱興高島台第3ビル4F)

等の影響を受けにくい波長であることにも留意 した。その結果、選定した IR-LED は、ピーク 波長 870 nm (L12756)、1200 nm (L13072)、1550 nm (L12509) の3種類 (いずれも浜松ホトニ クス製) である。また、受光器には 800 nm~ 1700 nm の領域で受光感度を持つ InGaAs フォ トダイオード (FGA01: ソーラボジャパン製) を選定した。

2.2 光学プローブの設計

複数の IR-LED を同一角度で塗板に投光し、 その反射光を効率的に集光して受光器に導くた めの積分球型光学プローブを設計した。図2に 反射光強度測定用プローブの概略図を示す。材 質は黒のポリアセタール樹脂で、積分球内面は 高反射率の酸化チタン塗料を隠蔽膜厚までコー ティング処理した。投光部の複数の IR-LED は 法線を中心軸とした円周上に配置し、受光部は 積分球開口面の中心法線上に配置している。投 光角は30°、受光角は0°とし、正反射光を直接 受光しないことで塗板の表面状態に影響されに くい設計とした。

図3に透過光強度測定用プローブの概略図を 示した。試験塗板を投光部と受光部で挟み込み、 法線方向で投受光する方式を採用した。受光部 には拡散した透過光を効率的に受光器へ導く集 光レンズを併用している。IR-LEDの複数設置

図2 反射光強度測定用プローブ

ができない仕様のため、実際の測定では都度 IR-LEDを差し替えて波長別透過光強度を測定 した。

光学プローブ内の IR-LED やフォトダイオー ドの制御と信号処理を行う電子回路のブロック 図を図4に示す。全体制御はコントローラー (KV-N14AT:キーエンス製)で行い、各 IR-LED の点灯回路はコントローラーからの信 号により、測定時間3 sec、周波数 300 Hz、 デューティ比10%のパルス駆動とした。フォト ダイオードからの受光信号はオペアンプ (OP:LMC662) で増幅された後、コントロー ラー内部でA/D変換されてメモリーに格納さ れる。格納されたデータのうち最大値と最小値 を除いた残りのデータを平均化処理して液晶 (LCD) 画面に表示した。液晶画面はタッチ パネル方式になっており、IR-LED の点灯条件 や測定時間の変更、および後述する同帰分析等 の演算処理に必要な係数入力が可能となってい 3.

図4 電子回路のブロック図

2.3 試験塗板及び校正用標準板の作製

塗膜の反射光強度および透過光強度と遮熱性 能との関係を調べる試験塗板(塗膜+基材)を 作製した。使用した塗料は常乾タイプの遮熱塗 料(水性シリコン遮熱屋根用:カンペハピオ 製)を含む一般塗料(水性多用途:アサヒペン 製)各色(赤、青、黄、緑、茶、灰、黒、白) である。塗膜単体での特性を測定するためには 近赤外線の透過率100%の基材が理想的だが、 今回は透過率85~90%の透明ソーダガラス板 (120 mm×80 mm×3 mm)を使用し、バー コーターを用いて乾燥膜厚が約 100μとなるよ うに塗装した。**表 1**に作製した試験塗板の一覧 を示す。最も明度の高い白塗料から最も明度の

塗板 No 塗色 L值 塗板 No 塗色 L值 1 赤 43 13 赤+白 63 青 2 35 14 青+白 65 黄+白 94 3 黄 87 15 緑 19 16 緑+白 50 4 茶+白 46 5 茶 18 17 6 黒 0 18 白 100 赤+遮熱灰 92 7 2319 遮熱灰+白4 8 青+遮熱灰 31 20 遮熱灰+白3 90 9 63 遮熱灰+白2 74黄+遮熱灰 21 10 緑+遮熱灰 26 22遮熱灰+白1 55 茶+遮熱灰 遮熱灰 0 11 12 2312 黒+遮熱灰 36 24 灰 11

表1 試験塗板一覧

低い黒塗料、原色塗料および白塗料との混合に よる淡色塗料、遮熱塗料と白塗料との混合によ る無彩色塗料、原色塗料と遮熱塗料の混合によ るハイブリッド塗料など、さまざまな組み合わ せにより遮熱性能が異なる試験塗板24枚を作製 した。参考値としてL値(0~100)を付記し たが、この値はスキャナーで取り込んだ試験塗 板の画像データを変換ソフトで RGB 値⇒Lab 値に変換した値である。

さらに、塗膜の反射光強度を反射率として換 算するために必要な校正用標準板には沈降性硫 酸パリウム(反射率92~97%:松田油絵具製) を圧縮成形したペレット(30mmø×5mmt) を適用した。また、反射率0%の測定には市販 の無反射シート(反射率1%以下:光陽オリエ ントジャパン製)を適用した暗箱(内部反射2 回以上:想定反射率0.01%以下)を自作して使 用した。

3. 実験2

3.1 照射装置の試作

試験塗板の遮熱性能を定量化するため、 WEBサイトでの公開文献²⁰を参考に照射装置 を試作した。太陽光の代替となる照射ランプに は人工太陽灯やメタルハライドランプ、ハロゲ ンランプなどが考えられるが、本検討では比較 的入手が容易なハロゲンランプを選定した。予

図6 遮熱性能評価用照射装置

備実験として、作製した試験塗板を使用し太陽 光照射とハロゲンランプ照射での塗膜表面温度 の相関性を調べた結果を図5に示した。相関係 数は $R^2=0.99$ と良好な結果となり、ハロゲン ランプは太陽光の代替として使用可能であるこ とを確認した。

図6に照射装置の概略図を示した。ハロゲン ランプ(JDR110V75WE11:ラウダ製)は照射 距離が可変出来るアーム(図示せず)に取り付

けられており、発泡スチロールで作製した断熱 ボックス(内容積:110mm×80mm×30mm) の上面にセットされた試験塗板を照射する。試 験塗板の表面温度および裏面温度は非接触温度 計(AD-5617:エー・アンド・デイ製)で測 定し、断熱ボックス内温度は熱電対の温度セン サーで測定した。今回の照射距離は100mmで 行い、ランプ点灯から各部位の温度変化が一定 値以内になるまで5分間隔で温度データを記録 した。

3.2 照射時間の決定

図7に試験塗板の表面温度、裏面温度および 断熱ボックス内温度のハロゲンランプ照射後の 経時変化を測定した一例を示した。いずれの温 度データも照射20分後にはほぼ飽和温度(5分 経過での温度変化が1℃以内)に近づくことが 分かる。よって、遮熱性能を定量評価する指数 として使用する飽和温度の測定データは照射後 25分前後(n=3)の単純平均値とした。

4. 結果および考察

- 4.1 遮熱パラメータ(日射反射率・日射透 過率・日射吸収率)の推定
- 1) 波長別反射光強度および透過光強度の測 定
- それぞれの光学プローブを使用して試験塗板

の波長別反射光強度および透過光強度測定を 行った。反射光強度を測定する際、試験塗板は 無反射シート上にセットした。無反射シートな しでは本来の反射光強度に加え、塗板を透過し た赤外線が下地で再反射して反射光強度に影響 を及ぼすためである。透過光強度は試験塗板の 厚みを考慮し投受光角度が法線方向で一致する よう光軸を調整して測定した。また、塗膜単体 での反射率および透過率の計算に必要な校正用 標準板と無反射シートの反射光強度および基材 (ガラス板)単体での反射光強度および透過光 強度も測定した。反射光強度や透過光強度とし て表示される数値は、受光部のフォトダイオー ドに流れた電流を電流/電圧変換してオペアン プで増幅した電圧をデジタル変換したものなの で、ディメンションとしてはV(ボルト)にな るが、本検討では無次元の反射光強度指数とし て取り扱う。

2) 日射反射率・日射透過率の計算

日射反射率を推定するにあたり波長別反射率 を計算した。標準となる硫酸バリウムの波長別 反射率は、文献値³³より0.97(870 nm)、0.95 (1200 nm)、0.92(1550 nm)と仮定した。以 下、波長別反射率の計算手順を説明する。

試験塗板の波長別反射光強度をX₈₇₀、X₁₂₀₀、 X₁₅₅₀とし、硫酸バリウムの波長別反射光強度を W₈₇₀、W₁₂₀₀、W₁₅₅₀とすれば、試験塗板の波長 別反射率は0.97×X₈₇₀/W₈₇₀、0.95×X₁₂₀₀/W₁₂₀₀、 0.92×X₁₅₅₀/W₁₅₅₀の計算式で求めることができ る。さらに、試験塗板の波長別透過強度をY₈₇₀、 Y₁₂₀₀、Y₁₅₅₀とし、試験塗板無し(空気層)での 透過光強度をA₈₇₀、A₁₂₀₀、A₁₅₅₀とすれば、試験 塗板の波長別透過率はY₈₇₀/A₈₇₀、Y₁₂₀₀/A₁₂₀₀、 Y₁₅₅₀/A₁₅₅₀で計算することができる。

次に、塗膜単体での波長別反射率を求めた。 基材となるガラス板単体の波長別反射光強度か ら計算した反射率および透過光強度から計算し た透過率より、塗膜単体での反射率は、試験塗 板の反射率-ガラス板の反射率×(試験塗板の 透過率/ガラス板の透過率)²の計算式で求める ことができる。ここで、(試験塗板の透過率/ ガラス板の透過率)は塗膜単体の透過率と同等 である。表2-①に波長別透過率、表2-②に 波長別反射率の計算結果を示す。

次に、塗膜単体の波長別反射率の計算結果を もとに塗膜単体での日射反射率を推定した。ま ず、太陽光スペクトルデータ(図1参照)より 各波長(870 nm、1200 nm、1550 nm)におけ るエネルギー値(0.890、0.431、0.258)(単位: W·m⁻²·nm⁻¹)を読み取り、合計の値を1と して各波長に重み係数(0.563、0.272、0.165) を設定した。ある塗膜の波長別反射率を R₈₇₀、 R₁₂₀₀、R₁₅₅₀とすれば、日射反射率は、0.563×R₈₇₀ +0.272×R₁₂₀₀+0.165×R₁₅₅₀で推定することが できる。同様に、塗膜の波長別透過率を T₈₇₀、 T₁₂₀₀、T₁₅₅₀とすれば、日射透過率は、0.563×T₈₇₀ +0.272×T₁₂₀₀+0.165×T₁₅₅₀で推定することが できる。表 2 - ③および表 2 - ④に計算結果を 示した。

3) 日射吸収率の推定

前項で推定した塗膜単体の日射反射率および 日射透過率から日射吸収率を求めた。エネル ギー保存則に基づき、反射率+吸収率+透過率 =1が成立すると仮定し、日射吸収率=1-日 射反射率-日射透過率の計算式で求めた。計算 結果を表 2-5に示す。

試験塗板と塗膜単体の遮熱パラメータ比 較

ここまで、基材(被塗物)の影響を除外した 塗膜単体としての遮熱パラメータを求めたが、 既存の測定対象物は試験塗板と同様の形態がほ とんどである。そこで、試験塗板での遮熱パラ メータを計算し塗膜単体での値と比較した。図 8 a に日射反射率、8 b に日射透過率の相関を 示す。その結果、両者とも誤差0.1%以内でほ ぼ一致しており、試験塗板の遮熱パラメータ≒ 塗膜単体の遮熱パラメータとして取り扱うこと ができることを確認した。つまり、今回基材と して選定した近赤外線透過率の高いガラス板に より、塗膜単体での特性を把握するという所期 の目的が達成できたものと考える。

涂垢	①波長別透過索			⑦波長別反射索			③日射	④日射	⑤日射
No	870 nm	1200 nm	1550 nm	870 nm	1200 nm	1550 nm	反射率	透過率	吸収率
1	0.076	0.191	0.538	0.285	0.234	0.163	0.251	0.183	0.566
2	0.040	0.054	0.107	0.463	0.436	0.370	0.440	0.055	0.505
3	0.044	0.044	0.067	0.704	0.572	0.479	0.631	0.048	0.321
4	0.048	0.146	0.522	0.295	0.249	0.173	0.263	0.153	0.585
5	0.009	0.006	0.005	0.062	0.057	0.052	0.059	0.007	0.933
6	0.009	0.006	0.005	0.018	0.017	0.018	0.018	0.007	0.975
7	0.042	0.070	0.139	0.399	0.397	0.317	0.385	0.066	0.549
8	0.027	0.048	0.077	0.466	0.482	0.415	0.462	0.041	0.497
9	0.033	0.043	0.064	0.564	0.551	0.475	0.546	0.041	0.414
10	0.035	0.062	0.131	0.390	0.396	0.321	0.380	0.058	0.562
11	0.008	0.007	0.014	0.107	0.102	0.094	0.104	0.009	0.888
12	0.008	0.006	0.005	0.071	0.069	0.064	0.069	0.007	0.923
13	0.014	0.028	0.041	0.707	0.707	0.630	0.694	0.022	0.283
14	0.015	0.024	0.040	0.684	0.683	0.634	0.675	0.021	0.303
15	0.026	0.028	0.041	0.850	0.727	0.650	0.783	0.029	0.188
16	0.013	0.031	0.043	0.628	0.665	0.619	0.637	0.023	0.340
17	0.009	0.004	0.004	0.146	0.140	0.127	0.141	0.007	0.852
18	0.014	0.014	0.031	0.905	0.786	0.720	0.842	0.017	0.141
19	0.007	0.004	0.008	0.498	0.453	0.422	0.473	0.007	0.520
20	0.008	0.004	0.006	0.395	0.357	0.326	0.373	0.007	0.620
21	0.008	0.003	0.004	0.262	0.238	0.212	0.247	0.006	0.746
22	0.009	0.003	0.005	0.182	0.168	0.149	0.173	0.007	0.821
23	0.033	0.052	0.086	0.453	0.473	0.398	0.450	0.047	0.503
24	0.009	0.003	0.004	0.118	0.110	0.098	0.112	0.006	0.881

表2 塗膜単体の反射率・透過率・吸収率

図8a 試験塗板と塗膜単体の日射反射率比較

4.2 ハロゲンランプ照射による昇温測定

表3にハロゲンランプ照射による試験塗板の 表裏面温度および内部温度の昇温データ(実測 値から雰囲気温度を差し引いた分)を示した。 いずれのデータも照射開始から25分後の飽和温

度をもとに算出したものである。基本的には、 日射反射率の高い試験塗板が表面・裏面・内部 温度ともに低い値を示し、日射反射率の低い試 験塗板は高い値を示す傾向ではあるが、個々に 精査していくと表面温度は同等であるのに裏面

塗板	遮熱性	生能(昇温デー	-タ)	塗板	遮熱性能(昇温データ)		
No	⊿ 表面温度	⊿ 裏面温度	⊿ 内部温度	No	⊿ 表面温度	⊿ 裏面温度	⊿ 内部温度
1	22.2	14.1	13.6	13	18.1	10.9	9.0
2	25.9	17.1	12.2	14	22.8	14.6	10.3
3	15.2	10.2	9.8	15	13.6	8.7	8.1
4	27.0	18.3	14.5	16	23.4	14.2	10.4
5	38.4	27.9	14.2	17	34.9	26.7	13.3
6	40.0	30.7	14.3	18	12.1	7.7	7.3
7	25.2	16.7	13.4	19	23.0	16.7	10.1
8	26.3	17.5	12.8	20	26.4	19.9	10.9
9	23.2	15.1	11.6	21	30.4	23.9	12.3
10	26.8	18.1	13.1	22	33.1	26.1	12.9
11	36.6	27.5	14.2	23	24.4	16.2	12.2
12	37.6	29.5	14.2	24	35.8	28.0	13.2

表3 試験塗板の遮熱性能(昇温データ)

(単位:℃)

表4 遮熱パラメータと遮熱性能との相関性

	日射反射率	日射透過率	日射吸収率
⊿ 表面温度	0.880	0.078	0.936
⊿ 裏面温度	0.878	0.121	0.959
⊿ 内部温度	0.815	0.055	0.706

温度や内部温度に相違が認められる。言い換え ると、反射率が同等でも透過率の違いで昇温 データに差異が生じることを確認した。

4.3 遮熱パラメータと遮熱性能(表裏面温 度及び内部温度)との相関性

表4に遮熱パラメータと遮熱性能(表面温

図9b 日射吸収率と △ 裏面温度との相関性

図9c 日射吸収率と⊿内部温度との相関性

図10 日射吸収率と⊿内部温度

度・裏面温度・内部温度) との相関性を単同帰 分析で調べた結果を示した。図9a、9b、9c に相関性が良好だった組み合わせの散布図を示 す。この結果から明らかなように、遮熱パラ メータのうち表裏面温度に関しては日射吸収率 が最も高い相関性を示した。当初予測したよう に被塗物の遮熱性能は日射反射率だけではなく 日射透過率も重要なファクターであり、その両 方に依存する日射吸収率が最も有効な遮熱パラ メータであることが分かった。一方、内部温度 に関しては日射吸収率より日射反射率の方が高 い相関性を示しているが、日射吸収率と内部温 度との相関グラフ(図10参照)を精査してみる と、傾きの異なる二つの直線関係が見られた。 さらに、それぞれのデータ群と表1の塗色を見 比べると直線①は主に有彩色、直線②は主に無 彩色のグループであることが分かった。つまり、 試験塗板の塗色が無彩色か有彩色かの情報を入 力して重回帰分析を行えば、更に高い精度で日 射吸収率による内部温度の予測が可能となるこ とが示唆された。

4.4 日射吸収率の予測

遮熱パラメータとしては日射吸収率が最も有 効であることを示したが、予測するためには日 射反射率の他に日射透過率を知る必要がある。 しかしながら、既存塗膜の日射反射率は波長別

反射光強度データから推定できても、透過光強 度データが必要となる日射吸収率を推定するこ とは困難である。そこで、日射反射率の計算で 使用した波長別反射光強度データを使用し、日 射吸収率を重回帰分析による近似式で予測する ことを試みた。波長別反射率R870、R1200、R1550 および波長別反射率比R₁₂₀₀/R₈₇₀、R₁₅₅₀/R₈₇₀、 R₁₅₀/R₁₂₀₀を説明変数とし、予測する日射吸収 率を目的変数として重回帰分析を行った。図11 に得られた回帰式で計算した予測値と日射吸収 率との相関を示した。その結果、相関係数 R² =0.9979という非常に高い相関関係が得られた ことから、例えば、既存塗膜の透過光強度が測 定できなくてもピーク波長の異なる複数の IR-LED による反射光強度を測定することで日 射吸収率の予測が可能であることが分かった。

4.5 追加実験

波長別反射光強度データに色彩データを追加 することで内部温度の予測精度が向上する可能 性に言及したが、同様に表面温度や裏面温度も 予測精度が向上すると考え検証実験を行った。 色彩データを得るために、RGBカラーセン サー(S9032-02:浜松ホトニクス製)と高輝 度白色 LED(OSPW5111B-QR:オプトサプ ライ製)を組み合わせた色彩測定用光学プロー

図12 色彩測定用光学プローブ

ブ(図12参照)を試作した。無反射シートでの RGB 信号出力を(0、0、0)、硫酸バリウムペ レットでの RGB 信号出力を(100、100、100) として換算した試験塗板の RGB 信号出力(各 0~100)を色彩データとした。この値は、試験 塗板を照射する白色 LED の反射光のうち R・ G・B成分の強度を数値化したものなので、分 光器などで得られる色度の絶対値とは異なり、 あくまで相対的なものである。表5に試験塗板 の色彩データ(RGB 値)一覧を示した。次に、 反射光強度データから求めた波長別反射率およ び反射率比に RGB 値を加えた 9 個のパラメー タを説明変数とし、遮熱性能(表面温度、裏面 温度、内部温度)を目的変数として重回帰分析 を行った。説明変数の選択による相関係数を一 覧にしたものを表6に示した。また、回帰式で 計算した予測値と実測値との相関グラフを図13 a)、b)、c) に示した。説明変数は増やすほど 相関係数は高くなり、結果的に、R²は全て0.98 以上という高い精度で遮熱性能の予測ができる

表6	説明変数の違	択と遮熱性能	との相関性
----	--------	--------	-------

	波長別反射率 (3)	+反射率比 (6)	+RGB 値 (9)
⊿ 表面温度	0.966	0.978	0.988
⊿ 裏面温度	0.961	0.981	0.986
⊿ 内部温度	0.951	0.965	0.983

※()内の数字は説明変数の数

ことを検証した。言い換えると、同じ被塗物お よび雰囲気温度条件で、塗装される塗料が異な る場合、その塗膜の波長別反射光強度データや 色彩データを測定することで、遮熱性能がどの ように変化するか相対的に予測できることが示 唆された。

5. まとめ

太陽光スペクトルを模した複数の赤外線発光 ダイオードを光源に適用し、波長別反射光強度 を測定することで、塗膜の遮熱性能(被塗物の 表裏面温度および内部温度)を評価する遮熱パ ラメータ(日射反射率・日射吸収率・日射透過 率)を推定する方法を見出した。さらに、遮熱 性能を評価する最も有効な遮熱パラメータは日 射吸収率であることを明らかにした。また、反 射光強度データに色彩データを追加した重回帰 分析では遮熱性能のより高精度な予測が可能で あることも検証した。

最後に、今回設計した反射光強度測定用光学 プローブと制御ユニットを組み合わせた試験装

塗板	1	白彩データ	7	塗板	1	白彩データ	7
No	R	G	В	No	R	G	В
1	4.7	2.3	2.5	13	13.3	7.1	8.8
2	5.5	5.4	10.9	14	14.0	14.5	26.8
3	29.5	26.2	15.5	15	40.3	37.8	24.1
4	2.0	2.2	2.4	16	6.1	7.4	8.4
5	2.2	1.8	2.2	17	5.1	4.6	5.6
6	1.2	1.1	1.3	18	79.3	80.7	95.7
7	3.2	2.2	2.8	19	33.6	34.3	44.0
8	5.0	5.2	9.1	20	25.0	25.5	33.0
9	6.7	7.6	6.2	21	15.4	15.7	20.7
10	2.8	3.2	3.6	22	10.3	10.6	14.1
11	3.0	2.7	3.3	23	6.0	6.2	8.7
12	3.4	3.5	4.7	24	6.3	6.4	8.7

表5 試験塗板の色彩デー	タ
--------------	---

図13a 重回帰式による予測値と △ 表面温度との 相関性

図13b 重回帰式による予測値と △ 裏面温度との 相関性

置は塗膜の遮熱性能評価装置として適用可能で あり、今後、遮熱関連の塗料分野等で有効活用 されることを期待したい。

図13c 重回帰式による予測値と⊿内部温度との 相関性

参考文献

- 1) NRE ウェブサイト, http://rredc.nrel.gov/solar/spectra/
- 村上聖: "高反射率塗料塗布材料の遮熱性 能評価",

www.murakami-lab.jp/pdf/research30.pdf

3) UV TALK LETTER vol. 12 (2013) アプリ ケーション=積分球と基準白板の選び方, an.shimadzu.co.jp/uv/support/lib/uvtalk/ uvtalk12/apl.htm